Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(34): 18694-18703, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34009717

RESUMO

We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.


Assuntos
Lipoglicopeptídeos/isolamento & purificação , Streptomyces/química , Lipoglicopeptídeos/química , Conformação Molecular
2.
Front Microbiol ; 11: 556063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072016

RESUMO

In this work, we report the isolation and detailed functional characterization for the new non-ribosomally synthesized antibiotic 5812-A/C, which was derived from metabolites of Streptomyces roseoflavus INA-Ac-5812. According to its chemical structure, the studied 5812-A/C preliminary is composed of a cyclic peptide part covalently bounded with an arabinose residue. N-terminal amino acid sequencing of the native peptide has identified its partial structure of Leu-Asp-Gly-Ser-Gly and consisting of a Tyr residue that is supposed to have a two-component peptide nature for the molecule studied. However, the structural analysis of the antibiotic complex derived from S. roseoflavus INA-Ac-5812 is still ongoing. The mechanism of action of 5812-A/C was assessed in comparison with its most related analog, the lipopeptide antibiotic daptomycin, given the presence in both antimicrobials of an L-kynurenine amino acid residue. The inhibitory activity of 5812-A/C against Gram-positive bacteria including methicillin-resistant strain of Staphylococcus aureus was similar to daptomycin. The mechanism of action of 5812-A/C was associated with the disruption of membrane integrity, which differs in comparison with daptomycin and is most similar to the antimicrobial membrane-disturbing peptides. However, 5812-A/C demonstrated a calcium-dependent mode of action. In addition, unlike daptomycin, 5812-A/C was able to penetrate mature biofilms and inhibit the metabolic activity of embedded S. aureus cells. At the same time, 5812-A/C has no hemolytic activity toward erythrocyte, but possessed weak cytotoxic activity represented by heterochromatin condensation in human buccal epithelium cells. The biological properties of the peptide 5812-A/C suggest its classification as a calcium-dependent antibiotic effective against a wide spectrum of Gram-positive pathogenic bacteria.

3.
ScientificWorldJournal ; 2012: 594231, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536145

RESUMO

We describe the actinomycete strain IMV-70 isolated from the soils of Kazakhstan, which produces potent antibiotics with high levels of antibacterial activity. After the research of its morphological, chemotaxonomic, and cultural characteristics, the strain with potential to be developed further as a novel class of antibiotics with chemotherapeutics potential was identified as Streptomyces sp. IMV-70. In the process of fermentation, the strain Streptomyces spp. IMV-70 produces the antibiotic no. 70, which was isolated from the culture broth by extraction with organic solvents. Antibiotic compound no. 70 was purified and separated into individual components by HPLC, TLC, and column chromatography methods. The main component of the compound is the antibiotic 70-A, which was found to be identical to the peptolide etamycin A. Two other antibiotics 70-B and 70-C have never been described and therefore are new antibiotics. The physical-chemical and biological characteristics of these preparations were described and further researched. Determination of the optimal growth conditions to cultivate actinomycete-producer strain IMV-70 and development of methods to isolate, purify, and accumulate preparations of the new antibiotic no. 70 enable us to research further the potential of this new class of antibiotics.


Assuntos
Antibacterianos/biossíntese , Macrolídeos/metabolismo , Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Macrolídeos/química , Macrolídeos/farmacologia , Testes de Sensibilidade Microbiana , Microbiologia do Solo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
4.
Antimicrob Agents Chemother ; 47(9): 2868-74, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12936987

RESUMO

Microcin C51 (MccC51) is an antimicrobial nucleotide-heptapeptide produced by a natural Escherichia coli strain. A 5.7-kb fragment of the pC51 plasmid carrying the genes involved in MccC51 production, secretion, and self-immunity was sequenced, and the genes were characterized. The sequence of the MccC51 gene cluster is highly similar to that of the MccC7 gene. Recombinant plasmids carrying different combinations of the mcc genes involved in the MccC51 production or immunity were constructed to characterize their functional roles. The mccA, mccB, mccD, and mccE genes are involved in MccC51 production, while the mccC and mccE genes are responsible for immunity to MccC51. The mcc gene cluster is flanked by 44-bp direct repeats. Amino acid sequence comparisons allowed us to propose functions for each Mcc polypeptide in MccC51 biosynthesis. Plasmid pUHN containing the cloned mccA, mccB, mccC, and mccE genes, but lacking mccD, directed the synthesis of MccC51p, a substance chemically related to MccC51. MccC51p exhibited weak antibiotic activity against E. coli and was toxic to the producing cells. The immunity to exogenous MccC51 determined by the mccC and mccE genes did not overcome the toxic action of MccC51p on the producing cells. The G+C content of the MccC51 operon, markedly lower than that of the E. coli genome, and the presence of direct repeats suggest the possibility of horizontal transfer of this gene cluster.


Assuntos
Bacteriocinas/genética , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Plasmídeos/genética , Meios de Cultura , DNA Bacteriano/genética , Escherichia coli/genética , Óperon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...